
Page 1 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

 GBE Version 3
API: New API Specification

Version Number: 2.0.28

Version Date: 20 December 2019

Page 2 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Document Revision History

Version Date Comment
2.0.1 10 Nov 2006 Release of the API v2 Info site.

2.0.2 13 Dec 2006 Added ListBlacklistInformation, change PlaceOrdersNoReceipt

(added withrawal parameter)

2.0.3 05 Feb 2007 Changed GetPrices, PlaceOrdersNoReceipt,

PlaceOrdersWithReceipt, GetEventSubTreeNoSelections,

CancelOrders, CancelAllOrders, and CancelAllOrdersOnMarket

2.0.4 14 Feb 2007 Chenged GetPrices (added TotalMatchedAmount), added

TimeStamps in all responses, in UpdateOrdersNoReceipt Price

and DeltaStake were changed to required fields.

2.0.5 05 Mar 2007 UpdateOrdersNoReceipt: added a new return code

293(InRunningDelayInEffect). GetPrices: added new return

code.

2.0.7 16 Apr 2007 Added methods SuspendFromTrading. UnsuspendFromTrading,

SuspendOrders, SuspendAllOrdersOnMarket,

SuspendAllOrders, RegisterHeartbeat,

ChangeHeartbeatRegistration, DeregisterHeartbeat, Pulse.

2.0.10 22 Aug 2007 Added IsFlipped And ShadowSelectionID to

GetMarketInformation and GetEventSubTreeWithSelections.

Added WantVirtualSelections to GetPrices

2.0.11 18 Sept 2008 Added GetOddsLadder

2.0.12 9 Oct 2008 Added GetCurrentSelectionSequenceNumber

Added punterReferenceNumber to GetOrderDetails,

ListBootstrapOrders, ListOrdersChangedSince,

CancelAllOrders, CancelAllOrdersOnMarket, CancelOrders,

SuspendAllOrders, SuspendAllOrdersOnMarket,

SuspendOrders, PlaceOrdersWithReceipi,

PlaceOrdersNoReceipt

2.0.13 20 Nov 2008 Added postingCategory, handle <Market> to

ListAccountPostings

2.0.14 9 Apr 2009 Added output parameters cancelOnInRunning,

cancelIfSelectionReset and isCurrentlyInRunning to

ListOrdersChangedSince and ListBootstrapOrders

Added optional placePayout output parameter to

GetEventSubTreeNoSelections,

GetEventSubTreeWithSelections, GetMarketInformation and

GetPrices

ListBootstrapOrders will return suspended orders

2.0.15 10 Mar 2010 Added optional wantPlayMarkets input parameter to

ListTopLevelEvents, GetEventSubTreeNoSelections and

GetEventSubTreeWithSelections

Added isPlayMarket output parameter to

GetEventSubTreeNoSelections,

GetEventSubTreeWithSelections, GetMarketInformation and

GetPrices

Added optional wantSettledOrdersOnUnsettledMarkets input

parameter to ListBootstrapOrders

2.0.16 9 Jun 2010 Added matchedOrderId output parameter to GetOrderDetails.

Page 3 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Version Date Comment
2.0.17 12 Aug 2010 Added optional output parameters wasMake,

grossSettlementAmount and orderCommission to

GetOrderDetails.

Added output parameters totalForSideMakeStake,

totalForSideTakeStake, punterCommissionBasis,

makeCommissionRate, takeCommissionRate, orderCommission

to ListOrdersChangedSince

Added output parameters totalForSideMakeStake,

totalForSideTakeStake, punterCommissionBasis,

makeCommissionRate, takeCommissionRate to

ListBootstrapOrders

2.0.18 17 Jan 2011 Removed virtual selection support from

GetEventSubTreeWithSelections, GetMarketInformation and

GetPrices

2.0.19 29 Jul 2011 Added transactionId to GetAccountPostings output

New method added ListAccountPostingsById.

2.0.20 14 Oct 2011 Added wantMarketMatchedAmount,

wantSelectionsMatchedAmounts and

wantSelectionMatchedDetails input parameters and

matchedMarketForStake, matchedMarketAgainstStake,

lastMatchedOccurredAt, lastMatchedPrice and

lastMatchedForSideAmount output parameters to GetPrices.

2.0.21 21 Jun 2013 Added raceGrade output parameter to

GetEventSubTreeNoSelections,

GetEventSubTreeWithSelections and GetMarketInformation.

Added homeTeamScore, awayTeamScore, scoreType,

selectionOpenInterest, marketWinnings,

marketPositiveWinnings, lastMatchedAgainstSideAmount,

matchedForSideAmountAtSamePrice,

matchedAgainstSideAmountAtSamePrice,

firstMatchAtSamePriceOccurredAt, numberOrders and

numberPunters output parameters to GetPrices.

2.0.22 10 Oct 2014 Added ListSelectionTrades

2.0.23 16 Jun 2015 Added expectedSelectionResetCount and

expectedWithdrawalSequenceNumber output parameters to

ListOrdersChangedSince and ListBootstrapOrders

2.0.24 19 Jan 2016 Added setToBeSPIfUnmatched input parameter to

UpdateOrdersNoReceipt

2.0.25 8 Apr 2016 Added orderFillType and fillOrKillThreshold output parameters

to ListBootstrapOrders and ListOrdersChangedSince.

2.0.26 6 May 2016 Added GetSPEnabledMarketsInformation

2.0.27 6 September 2019 Added ListTaggedValues

2.0.28 20 Dcember 2019 Deprecated ChangePassword

Page 4 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Table of Contents

Table of Contents ... 4
General Points .. 5
Secure ... 6

GetAccountBalances .. 6

ListAccountPostings .. 7
ListAccountPostingsById .. 7
ListOrdersChangedSince ... 8
ListBootstrapOrders ... 9
GetOrderDetails ... 12

PlaceOrdersNoReceipt ... 13
PlaceOrdersWithReceipt .. 15

UpdateOrdersNoReceipt .. 17
CancelOrders .. 18
CancelAllOrdersOnMarket .. 18
CancelAllOrders .. 19
ListBlacklistInformation .. 19

SuspendFromTrading ... 20

UnsuspendFromTrading .. 20
SuspendOrders ... 20
SuspendAllOrdersOnMarket .. 21

SuspendAllOrders .. 21
UnsuspendOrders ... 22

RegisterHeartbeat ... 22

ChangeHeartbeatRegistration .. 23

DeregisterHeartbeat ... 23
Pulse ... 23

ReadOnly ... 25

ListTopLevelEvents ... 25
GetEventSubTreeNoSelections .. 25

GetEventSubTreeWithSelections .. 26
GetMarketInformation ... 27
ListSelectionsChangedSince .. 28
ListMarketWithdrawalHistory ... 29

GetPrices .. 29
GetOddsLadder .. 32
GetSPEnabledMarketsInformation .. 33

GetCurrentSelectionSequenceNumber .. 33
ListSelectionTrades .. 33
ListTaggedValues .. 34

Data Dictionary (enumerations) .. 36

Return Codes .. 44

Page 5 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

General Points

1. In addition to normal WS return codes, every call explicitly returns a set of

GBE-specific return codes. The complete set of GBE-specific return codes that

can be returned from any API are listed under the definition of that API.

2. Although these interfaces are defined at this logical level using enumerations

(to clearly describe the domain alues that individual parameters can have)

there will be no enumerators used in any actual manifestation of these

interfaces. This is to facilitate the schema evolution of these interfaces – new

domain values can be added while maintaining binary compatibility. All code

written to use these interfaces must be aware that new domain values could be

added and must be capable of operating elegantly if an un-expected domain

value is encountered.

3. The concept of sequence numbers is used heavily in all these interfaces (and in

fact using it is the only way to obtain a list of orders). Every time an order is

changed in any way the order is assigned a new sequence number. Sequence

numbers are guaranteed to increase for every punter over time (ever punter has

his how sequence number and sequence numbers can not be compared across

punters). An order that has been changed after another order has been changed

is guaranteed to have a bigger sequence number than that other order. The

sequence number for an order is updated after any change whatsoever is made

to the order including changes that were not initiated by the punter, for

example when that order gets matched, repriced or cancelled dur to rule 4

withdrawal or settled.

It is very efficient to identify and retrieve orders for a punter based on the

sequence number. The way to use sequence numbers is to record the largest

sequence number to date and then poll for orders changed since that sequence

number. If a order has been changed it will have a sequence number bigger

than that sequence number and so that changed order will be returned. Record

the new sequence number that was returned and sepecify that latest sequence

number next time you poll for orders.

4. This new API is not a replacement for the existing API. The existing API will

continue to exist for the foreseeable future. It is anticipated that a robot will

use one API or the other API but will not use a mixture of APIs (although

there is no technical reason or restriction why a robot could not use such a

mixture). The names of APIs in this new version are intentionally different

from similar calls in the existing API to reduce confusion.

5. This API supports suspending orders in addition to cancelling orders.

Suspending orders means that the order will not be matched, but the order still

exists and funds are still reserved for that order. Suspending orders is very

much quicker and more efficient than cancelling orders (as the calculation to

determine the new amount of funds to reserve does not need to be performed).

Page 6 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

It is probable that at some stage a limit will be imposed on the number of

orders that can be specified on PlaceOrdersNoReceipt,

PlaceOrdersWithReceipt, UpdateOrdersNoReceipt and the CancelOrders API

calls. No limit will be placed on the number or orders that can be specified on

the SuspendOrders API calls. It is therefore recommended that robots use the

SuspendOrders API calls to immediately ensure that none of their orders will

get matched and to then determine update or cancel those orders in batches.

The use of the reciprocal Unsuspend Order call is not intended as a mechanism

to present orders for matching i.e. it is not intended as a substitute for Place

Order. It is intentionally and substantially restricted in terms of the number of

orders that can be unsuspended in any one 60 sec period.

6. The response to every call includes an explicit explicit timestamp, which is the

time at which the response was issued by the system. This can be used by

clients to determine how current a response is, for example if there are

inordinate network delays.

7. Return codes – a number of return codes can be returned by all APIs in

addition to the API-specific codes that are explicitly defined for each API.

These return codes are:

• RC000 Success

• RC001 ResourceError

• RC002 SystemError

• RC405 InvalidPassword

• RC406 PunterIsBlacklisted

• RC533 PunterNotAuthorisedForAPI

Secure
This group of interfaces deals with all aspects of interacting securely with the API.

As a rule these contain all methods that are specific to the user’s account i.e. creating

and managing orders. All interfaces in this group are executed within the context of a

user’s session, and so the user’s identity is inferred from that session and is not

specified explicitly on each API call.

GetAccountBalances

Goal Returns a summary of current balances.

Description

Input Parameters None

Output Parameters currency : Currency

availableFunds : MoneyAmount

balance : MoneyAmount

credit : MoneyAmount

exposure: MoneyAmount

Return Codes • RC406 PunterIsBlacklisted

Page 7 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

ListAccountPostings

Goal Returns more detailed information about the account, including account

transactions between two given date and times.

Description There is a limit on the number of records that will be returned by this API

call. The records returned are guaranteed to be in order of increasing

posting date and time. To obtain the full set of postings repeatedly call this

API specifying the maximum postedAtTime returned from the previous call

as the startTime until no more records are returned. (Note, Posting times are

not absolutely unique and you must be able to cater for this when retrieving

multiple pages of Postings.)

 Note, there can be more than one Settlement posting for any order,

and more than one Commission posting for any market - there will be more

than one in the case of a market being settled, unsettled and then resettled.

Input Parameters startTime : Timestamp

endTime : Timestamp

Output Parameters resultSetTruncated : Boolean

Flag indicating whether or not all available data was returned.

There is a system defined limit on the number of postings that will

be returned in any one call (let’s call it ‘n’). If more than ‘n’

postings match the search criteria then only the forst ‘n’ will be

returned and this flag will be true. If less than ‘n’ match the search

criteria then all those postings will be returned and this flag will be

false.

currency : Currency

availableFunds : MoneyAmount

balance : MoneyAmount

credit : MoneyAmount

exposure: MoneyAmount

[variable]

postedAt : Timestamp

description : String(256)

amount: MoneyAmount

transactionId : long

resultingBalance: MoneyAmount

postingCategory : PostingCategory

[optionally]

[either]

Present if postingCategory is Settlement.

handle : long <Order>

[or]

Present if postingCategory is Commission.

handle : long <Market>

Return Codes • RC406 PunterIsBlacklisted

ListAccountPostingsById

Goal Returns more detailed information about the account, including account

transactions that have a transactionId greater than the value specified as

input parameter.

Description This differs from ListAccountPostings in that this API returns all Postings

that have a transactionId greater than the one specified as input parameter,

whereas ListAccountPostings returns Postings that were created between

specific times. A system-defined limit defines the maximum number of

Postings that will be returned from any one call and if there are more

Postings than that limit then only the first number of Postings will be

returned and the caller will need to invoke this API again specifying as

input parameter the maximum transactionId returned in the previous call.

These Postings are sorted (ascending) by transactionId.

 The anticipated usage is that the caller will first call

Page 8 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

ListAccountPostings for the time period required, and then change to

calling this API (specifying the maximum transactionId returned from the

ListAccountPostings call as input parameter).

 Note, there can be more than one Settlement posting for any order,

and more than one Commission posting for any market - there will be more

than one in the case of a market being settled, unsettled and then resettled.

Input Parameters transactionId : long

Output Parameters currency : Currency

availableFunds : MoneyAmount

balance : MoneyAmount

credit : MoneyAmount

exposure: MoneyAmount

[variable]

postedAt : Timestamp

description : String (256)

amount: MoneyAmount

transactionId : long

resultingBalance: MoneyAmount

postingCategory : PostingCategory

[optionally]

[either]

Present if postingCategory is Settlement.

orderId : long

[or]

Present if postingCategory is Commission.

marketId : long

Return Codes • RC406 PunterIsBlacklisted

ListOrdersChangedSince

Goal Returns a list of orders (for the currently logged in user) that have changed

since a given sequence number.

Description The number of records that are returned by this API call is limited to a

system-defined value. It is guaranteed that those rows are returned in order

of increasing sequenceNumber. Thus this API can be called repeatedly

(specifying the maximum sequenceNumber received on the previous call) to

obtain the full set.

 This API call returns a record for every order that has had any

change made since the sequenceNuumber specified. This includes any

orders that have been settled or cancelled. This information may be useful if

you want to track the settlement status of your orders.

 As this API call returns information about all orders (including

settled orders) it should not be used for initialisation. Rather the

ListBootstrapOrders API should be used for initialisation, and when fully

initialised you can switch to use this API.

Input Parameters sequenceNumber : long

Output

Parameters

[variable]

handle : long <Order>

handle : long <Market>

handle : long <Selection>

sequenceNumber : long

issuedAt : Timestamp

polarity : Polarity

unmatchedStake : MoneyAmount

totalForSideMakeStake : MoneyAmount

The amount of the matched for side stake that was a

‘make’. The value returned here reflects only the amount

of ‘make’ stake that was matched since the exchange

started to record make/ take information and so the sum of

Page 9 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

this and totalForSideTakeStake will not necessarily equal

the totalForSideStake for orders that were created before

that date.

totalForSideTakeStake : MoneyAmount

The amount of the matched for side stake that was a

‘take’. The value returned here reflects only the amount of

‘take’ stake that was matched since the exchange started

to record make/ take information and so the sum of this

and totalForSideMakeStake will not necessarily equal the

totalForSideStake for orders that were created before that

date.

requestedPrice : Price

[optionally]

matchedPrice : Price

[optionally]

matchedStake : MoneyAmount

matchedAgainstStake : MoneyAmount

status : OrderStatus

orderFillType : OrderFillType

[optionally]

fillOrKillThreshold : MoneyAmount

expectedSelectionResetCount : int

expectedWithdrawalSequenceNumber : int

restrictOrderToBroker : Boolean

punterReferenceNumber : long

cancelOnInRunning : Boolean

cancelIfSelectionReset : Boolean

isCurrentlyInRunning : Boolean

punterCommissionBasis : PunterCommissionBasis

The basis on which commission is calculated.

makeCommissionRate : Percentage

The commission rate that was used in calculating

commission for ‘make’ matches involving this order.

takeCommissionRate : Percentage

The commission rate that was used in calculating

commission for ‘take’ matches involving this order.

[optionally]

Will only be present for Orders that have been settled.

grossSettlementAmount: MoneyAmount

The gross profit or loss for this order. Will only

be present for settled orders.

[optionally]

orderCommission : MoneyAmount

The amount of commission that was charged on

this Order. Will only be present if the Order was

settled on any basis other than

NetMarketWinnings (note that this refers to the

basis on which the Order was settled and could

be different to the basis associated with the Order

when the Order was placed).

Return Codes • RC406 PunterIsBlacklisted

ListBootstrapOrders

Goal List bootstrap orders that have a sequence number greater than the sequence

number specified.

Description This call is used to obtain the initial list of orders that need to be taken into

consideration when establishing positions. Information about the following

orders will be returned:

Page 10 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

• active orders

• fully matched orders

• cancelled orders that have a matched portion

• suspended orders

• some settled or voided orders under some conditions

 Orders that have been settled or voided are not usually

returned by this API, however settled or voided orders on a market

which has not been fully settled will be returned if a value of true is

specified for the wantSettledOrdersOnUnsettledMarkets input

parameters. (This situation can occur when there is a Selection that

has been settled although other Selections in the Market have not

yet been settled, for example teams that have been knocked out of

the FA Cup can be settled as losing Selections before the winner of

the FA Cup is known).

Cancelled orders that do not have a matched portion will not be returned by

this call.

 This call is to be used when obtaining the initial list of active

orders. The ListOrdersChangedSince call should be used to poll for any

changes to that position.

 There is a limit on the number of records that this API returns on

any one call. This limit (referred to as ‘nnn’ below) is in the hundreds. If

there are more than ‘nnn’ records to be returned then only the first ‘nnn’ will

be returned but it is guaranteed that they will be returned in the order of their

punterSequenceNumber. Subsequent calls to this API can be used to return

the rest of the records.

 This API call returns a maximumPunterSequenceNumber. This is

used to enable initial positions to be reliably established where there are

more active orders than can be returned from one ListBootstrapOrders call.

The way to use these is as follows. Initially call this API specifying -1 for

punterSequenceNumber. In addition to returning up to ‘nnn’ records this API

call also returns the current maximumPunterSequenceNumber. Now

repeatedly call this API specifying the maximum punterSequenceNumber

returned on the previous call until either:

1. you receive a punterSequenceNumber equal to or greater than the

maximumPunterSequenceNumber returned from first call

2. or until no more records are returned.

At this stage you have fully bootstrapped and you can now change to polling

using ListOrdersChangedSince (initially specifying

maximumPunterSequenceNumber as the punterSequenceNumber input

parameter to that call).

 When you have completed the bootstrap cycle you are not

guaranteed that you have a full set of orders. You are, however, guaranteed

that when you subsequently use ListOrdersChangedSince that you will have

that full set. For example, let’s say you need to call this API 5 times to

complete the bootstrap cycle. If after the first call an order that would have

been returned in the third call gets modified. Its sequenceNumber is now

greater than the sequence number at which you will terminate the bootstrap

cycle. Therefore you will not have received that order when you complete

the bootstrap cycle. However, you will receive that order when you call

ListOrdersChangedSince subsequently.

 Note that the meaning of maximumPunterSequenceNumber is that

there are no bootstrap orders with a sequence number greater than the one

specified, not that there is necessarily a bootstrap order with a sequence

number equal to the maximumPunterSequenceNumber specified.

Input Parameters sequenceNumber : long

[optionally]

wantSettledOrdersOnUnsettledMarkets : Boolean

Flag indicating whether or not information about settled

orders on unsettled markets should be returned. Values are

true: return information about settled orders on unsettled

Page 11 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

markets and false: do not return information about settled

orders on unsettled markets. If not specified a value of

false is defaulted.

 Information about settled orders in unsettled

markets can be useful when calculating the punter’s profit

and loss in markets that have been partially settled.

Output

Parameters

maximumSequenceNumber : long

This is the maximum punter sequence number for the punter when

the call is issued. This can vary from call to call during the one

bootstrap cycle. Use the value returned on the first call in the cycle

for all remaining calls in the bootstrap cycle.

[variable]

handle : long <Order>

handle : long <Market>

handle : long <Selection>

sequenceNumber : long

issuedAt : Timestamp

polarity : Polarity

unmatchedStake : MoneyAmount

totalForSideMakeStake : MoneyAmount

The amount of the matched for side stake that was a

‘make’.

totalForSideTakeStake : MoneyAmount

The amount of the matched for side stake that was a ‘take’.

requestedPrice : Price

[optionally]

matchedPrice : Price

[optionally]

matchedStake : MoneyAmount

matchedAganistStake : MoneyAmount

status : OrderStatus

orderFillType : OrderFillType

[optionally]

fillOrKillThreshold : MoneyAmount

expectedSelectionResetCount : int

expectedWithdrawalSequenceNumber : int

restrictOrderToBroker : Boolean

punterReferenceNumber : long

cancelOnInRunning : Boolean

cancelIfSelectionReset : Boolean

isCurrentlyInRunning : Boolean

punterCommissionBasis : PunterCommissionBasis

The basis on which commission is calculated.

makeCommissionRate : Percentage

The commission rate that was used in calculating

commission for ‘make’ matches involving this order.

takeCommissionRate : Percentage

The commission rate that was used in calculating

commission for ‘take’ matches involving this order.

[optionally]

grossSettlementAmount: MoneyAmount

The gross profit or loss for this order. Will only

be present for settled orders (which will only ever

be returned if the

wantSettledOrdersOnUnsettledMarkets input

parameter was true).

Return Codes • RC406 PunterIsBlacklisted

Page 12 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

GetOrderDetails

Goal Get detailed information about an order.

Description This API returns full detail and history about an order. This API should not

be called routingly but only in the exceptional case where there is some

query or uncertainity about the status of a particular order.

Input Parameters handle : long <order>

Output

Parameters

handle : long <Selection>

status : OrderStatus

issuedAt : Timestamp

lastChangedAt : Timestamp

expiresAt : Timestamp

validFrom : Timestamp

restrictOrderToBroker : Boolean

orderFillType : OrderFillType

[optionally]

fillOrKillThreshold : MoneyAmount

handle : long <Market>

marketType: MarketType

status : MarketStatus

requestedStake : MoneyAmount

requestedPrice : Price

expectedSelectionResetCount : int

expectedWithdrawalSequenceNumber : int

totalStake : MoneyAmount

unmatchedStake : MoneyAmount

averagePrice : Price

matchingTimestamp : Timestamp

polarity : Polarity

withdrawRepriceOption : WithdrawRepriceOption

cancelOnInRunning : Boolean

cancelIfSelectionReset : Boolean

sequenceNumber : long

punterReferenceNumber : long

[optionally]

If the order has been settled then these values will be present.

grossSettlementAmount : MoneyAmount

This will be specified only if the status of the Order is

Settled. The amount here is the gross amount posted as a

result of this order being settled. A positive amount

indicates a ‘winning’ bet and a negative amount indicates

a ‘loosing’ bet.

[either]

orderCommission : MoneyAmount

The amount of commission that was charged on

this Order.

[or]

marketCommission :MoneyAmount

The amount of commission that was charged on

this market.

marketSettledDate : Timestamp

The time at which the market was settled.

[variable]

The following is an audit log of the entire history of the order. It is

intended for human consumption only.

time : Timestamp

orderActionType : OrderActionType

[optionally]

requestedStake : MoneyAmount

The absolute amount specified (when placing

Page 13 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

order) or the amount of change (when changing

an order) – in which case the amount can

benegative.

[optionally]

requestedPrice : Price

[optionally]

The amount matched in this match – will only be present

when ‘Matched’.

matchedStake : MoneyAmount

matchedAgainstStake : MoneyAmount

priceMatched : Price

handle : long <MatchedOrder>

[optionally]

This is optional to cater for Orders that were

matched before this property was added. The

property will be present for all Order matches

that occurred after this property has been added.

wasMake : Boolean

Flag indicating whether or not the Order

concerned was the ‘make’ or the ‘take’

order in this particular match. Values

are true: the order concerned was the

‘make’ order in this match and false: the

order concerned was the ‘take’ order in

this match.

totalStake : MoneyAmount

The total amount of matched for side stake after the action

referenced by this record occurred.

totalAgainstStake : MoneyAmount

The total amount of matched against side stake after the

action referenced by this record occurred.

averagePrice : Price

[optionally]

grossSettlementAmount : MoneyAmount

orderCommission : MoneyAmount

The amount of commission that was charged on

this Order.

Return Codes • RC021 OrderDoesNotExist

• RC274 PunterOrderMismatch

• RC406 PunterIsBlacklisted

PlaceOrdersNoReceipt

Goal Places one or more orders on the exchange.

Description This returns the handle of each order placed. It does not return any

indication of the match status of the orders (and accordingly does not wait

for the matching cycle to complete before returning).

 Depending on the value of a parameter

(wantAllOrNothingBehaviour) the placing of all orders specified will occur

atomically – either all of them will be placed or none of them will be placed

if an error occurs. Depending on the value of this parameter return code

handling will be slightly different in this API than in other APIs. There are a

number of return codes that could affect a specific order through no fault of

the caller, for example if the remaining unmatched portion of an order has

just got matched. Instead of rejecting the change to all orders a set of return

codes has been defined that are considered acceptable return codes. If one of

the acceptable return codes is encountered on one or more orders then the

change to the orders concerned will not occur but the change to all other

orders will occur. However if a return code outside of these acceptable

Page 14 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

return codes occurs on any order then no orders will be changed by this API

and that return code will be returned as the API return code. If the only

return codes encountered on any order is an acceptable return code the API

return code will be Success and the order-specified return code will contain

the acceptable return code for the order(s) concerned. The acceptable return

codes are:

• RC000 Success

• RC015 MarketNotActive

• RC017 SelectionNotActive

• RC114 ResetHasOccurred

Input Parameters wantAllOrNothingBehaviour : Boolean

Flag controls whether all or nothing behaviour is desired. alues are

true: do not place any oders if any error occurs and false if an

acceptable error occurs placing an order proceed and place all

other orders. If a non-acceptable error occurs placing any order

then no orders will be placed.

<variable>

handle : long <Selection>

requestedStake : MoneyAmount

requestedPrice : Price

polarity : Polarity

expectedSelectionResetCount : short

expectedWithdrawalSequenceNumber : short

cancelOnInRunning : Boolean

A value of false must be specified when placing orders on

an in-running market, otherwise RC114

ResetHasOccurred will be returned.

 If it is desired to place an order in an non-in-

running market and for it not to be cancelled when the

market goes in running then a value of false must also be

specified for cancelIfSelectionReset. If a value of false is

specified for cancelOnInrunning and a value of true is

specified for cancelIfSelectionReset then the order will be

treated as if the value specified for cancelOnInrunning

was true.

 If a value of false is specified then the value

actually specified for withdrawRepriceOption is ignored

and a value of DontReprice is always used.

 A value of false can be specified for back orders

with an OrderFillType of SPIfUnmatched. In that case

any part of the order that was not matched at SP for any

reason when the market was turned in-running will

remain available to be matched in the in-running market.

It is not valid to specify a value of false for lay orders that

have an OrderFillType of SPIfUnmatched. If a value of

false is specified in this case the order will be treated as if

a value of true was specified.

cancelIfSelectionReset : Boolean

[optionally]

expiresAt : Timestamp

withdrawRepriceOption : WithdrawRepriceOption

restrictOrderToBroker : Boolean

Deprecated.

[optionally]

killType : KillType

If not specified then the Order will have no kill

type, that is, the order will never be cancelled

automatically after the first attempt has been

made to match it.

punterReferenceNumber : long

Page 15 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Does not need to be unique. Whatever value is specified

here will be returned on all calls returning information

about the order. Can be used by the caller to correlate the

handle of an Order with an id of meaning to the caller.

[optionally]

channelInformation : String(256)

Output

Parameters

<variable>

handle : long <Order>

returnCode : int

punterReferenceNumber : long

Return Codes • RC011 SelectionDoesNotExist

• RC015 MarketNotActive

• RC017 SelectionNotActive

• RC022 NoUnmatchedAmount

• RC025 PunterReservationPerMarketExceeded

• RC114 ResetHasOccurred

• RC128 TradingCurrentlySuspended

• RC131 InvalidOdds

• RC136 WithdrawalSequenceNumberIsInvalid

• RC137 MaximumInputRecordsExceeded

• RC208 PunterSuspended

• RC240 PunterProhibitedFromPlacingOrders

• RC241 InsufficientPunterFunds

• RC271 OrderAPIInProgress

• RC302 PunterIsSuspendedFromTrading

• RC305 ExpiryTimeInThePast

• RC406 PunterIsBlacklisted

• RC597 MarketIsForRealMoney

• RC598 MarketIsForPlayMoney

PlaceOrdersWithReceipt

Goal Places one or more orders on the exchange.

Description This call waits for a matching cycle to complete and returns information

about how much of each order was matched and lists the status of each order.

As it waits for a matching cycle to complete it takes more time than the

PlaceOrdersNoReceipt call. This API can only be used for placing

FillAndKill, FillOrKill or SPIfUnmatched orders.

Input Parameters <variable>

handle : long <Selection>

requestedStake : MoneyAmount

requestedPrice : Price

polarity : Polarity

expectedSelectionResetCount : short

expectedWithdrawalSequenceNumber : short

killType : KillType

[optionally] <if FillOrKill or FillOrKillDontCancel >

fillOrKillThreshold : MoneyAmount

[optionally] <if FillOrKillDontCancel>

cancelOnInRunning : Boolean

A value of false must be specified when

placing orders on an in-running market,

otherwise RC114 ResetHasOccurred will

be returned.

 If it is desired to place an order

in a pre-start market and for it not to be

cancelled when the market goes in-

running then a value of false must also be

specified for cancelIfSelectionReset. If a

Page 16 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

value of false is specified for

cancelOnInrunning and a value of true is

specified for cancelIfSelectionReset then

the order will be treated as if the value

specified for cancelOnInrunning was true.

 If a value of false is specified

then the value actually specified for

withdrawRepriceOption is ignored and a

value of DontReprice is always used.

 It is not valid to specify a value

of false for orders that have an

OrderFillType of SPIfUnmatched. If a

value of false is specified in this case the

order will be treated as if a value of true

was specified.

cancelIfSelectionReset : Boolean

It is not valid to specify a value of false

for orders that have an OrderFillType of

SPIfUnmatched. If a value of false is

specified in this case the order will be

treated as if a value of true was specified.

withdrawRepriceOption : WithdrawRepriceOption

[optionally]

expiresAt : Timestamp

restrictOrderToBroker : Boolean

Deprecated.

punterReferenceNumber : long

Does not need to be unique. Whatever value is specified

here will be returned on all calls returning information

about the order. Can be used by the caller to correlate the

handle of an Order with an id of meaning to the caller.

[optionally]

channelInformation : String(256)

Output

Parameters

<variable>

handle : long <Order>

sequenceNumber : long

issuedAt : Timestamp

polarity : Polarity

unmatchedStake : MoneyAmount

[optionally]

matchedPrice : Price

[optionally]

matchedStake : MoneyAmount

matchedAgainstStake : MoneyAmount

status:OrderStatus

punterReferenceNumber : long

Return Codes • RC011 SelectionDoesNotExist

• RC015 MarketNotActive

• RC017 SelectionNotActive

• RC022 NoUnmatchedAmount

• RC114 ResetHasOccurred

• RC128 TradingCurrentlySuspended

• RC131 InvalidOdds

• RC136 WithdrawalSequenceNumberIsInvalid

• RC137 MaximumInputRecordsExceeded

• RC208 PunterSuspended

• RC240 PunterProhibitedFromPlacingOrders

• RC241 InsufficientPunterFunds

• RC271 OrderAPIInProgress

Page 17 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

• RC302 PunterIsSuspendedFromTrading

• RC305 ExpiryTimeInThePast

• RC406 PunterIsBlacklisted

• RC597 MarketIsForRealMoney

• RC598 MarketIsForPlayMoney

UpdateOrdersNoReceipt

Goal Updates one or more orders on the exchange.

Description This changes the price or the amount (or both) of an existing orders. It does

not return any indication of the match status of any of the orders concened

(and accordingly does not wait for the matching cycle to complete before

returning). It returns a separate return code for each order specified.

It is an error to attempt to change an order that is currently subject to an in-

running delay.

Input Parameters <variable>

handle : long <Order>

deltaStake : MoneyAmount

price : Price

expectedSelectionResetCount : short

expectedWithdrawalSequenceNumber : short

[optionally]

cancelOnInRunning : Boolean

If a value is specified for an order on an in-

running market a value of false must be

specified, otherwise RC114 ResetHasOccurred

will be returned.

 If a value of false is specified for

cancelOnInrunning and a value of true is

specified for cancelIfSelectionReset then the

order will be treated as if the value specified for

cancelOnInrunning was true.

[optionally]

cancelIfSelectionReset : Boolean

[optionally]

setToBeSPIfUnmatched : Boolean

Flag indicating that the orderFillType of this order should

be changed to be SPIfUnmatched. This can only be

specified if the orderFillType is currently Normal (if not,

then RC892 CannotChangeToSPIfUnmatched will be

returned). Values are: true change the orderFillType to

SPIfUnmatched and false or not specified: do not change

the orderFillType.

Output

Parameters

[variable]

handle : long <Order>

returnCode : int

Return Codes • RC015 MarketNotActive

• RC017 SelectionNotActive

• RC021 OrderDoesNotExist

• RC022 NoUnmatchedAmount

• RC114 ResetHasOccurred

• RC128 TradingCurrentlySuspended

• RC131 InvalidOdds

• RC136 WithdrawalSequenceNumberIsInvalid

• RC137 MaximumInputRecordsExceeded

• RC208 PunterSuspended

• RC240 PunterProhibitedFromPlacingOrders

• RC241 InsufficientPunterFunds

• RC271 OrderAPIInProgress

Page 18 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

• RC274 PunterOrderMismatch

• RC293 InRunningDelayInEffect

• RC299 DuplicateOrderSpecified

• RC302 PunterIsSuspendedFromTrading

• RC305 ExpiryTimeInThePast

• RC306 NoChangeSpecified

• RC406 PunterIsBlacklisted

• RC892 CannotChangeToSPIfUnmatched

CancelOrders

Goal Cancels one or more orders on the exchange.

Description Information about each order specified is returned provided that there is no

unmatched portion of that order existing at the time this API returns (that

is, if the order was cancelled explicitly by this call, if it had been

previously cancelled or if it had been fully matched). Orders that are

currently subject to an in-running delay will not be cancelled immediately.

Rather, when the in-running delay period has expired an attempt will be

made to match the order and then any remaining unmatched amount on the

order will be cancelled.

 It is not considered an error if any of the orders specified can not

be cancelled because they have been fully filled, already cancelled or are

currently subject to an in-running delay. It is considered an error if the

handle of an non-existent order was specified.

 Information about every order specified will be returned

regardless of whether or not the order was cancelled by this API

except for orders that are currently subject to an in-running delay.

Specifically, if an order specified was fully matched or had been

cancelled by the system information about the current status of

that order will be returned whereas if the order is currently subject

to an in-running delay then no information about that order will

be returned. Note that this can result in information about fewer

orders being returned than was explicitly specified as input

parameters,

Input Parameters [variable]

handle : long <Order>

Output Parameters [variable]

handle : long <Order>

punterReferenceNumber : long

cancelledForSideStake : MoneyAmount

The amout of for side stake that was cancelled. This

amount is always definitive. (In some rare circumstances

subsequent calls to e.g. ListOrderChangedSince may not

immediately reflect amounts that were matched just prior

to the order being cancelled. The amount of stake that

was matched when the order was cancelled can

calculated from this value, which is guaranteed to be

correct).

Return Codes • RC021 OrderDoesNotExist

• RC137 MaximumInputRecordsExceeded

• RC274 PunterOrderMismatch

• RC299 DuplicateOrderSpecified

CancelAllOrdersOnMarket

Goal Cancels all unmatched orders on a market.

Description Information about each order actually cancelled by this API will be

returned. Information about orders currently subject to an in-running delay

will not be returned as those orders will not be cancelled immediately.

Page 19 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Rather, when the in-running delay period has expired an attempt will be

made to match the order and then any remaining unmatched amount on the

order will be cancelled.

 This API will explicitly determine the number of Orders to be

actually cancelled and will not cancel any but return RC137 if the number

of orders to be cancelled exceeds the limit. You must then find another

mechanism to cancel those orders (like cancelling those orders in groups by

specifying the orders handles expicitly). This is to protect against Denial of

Service attacks.

Input Parameters [variable]

handle : long <Market>

Output

Parameters

[variable]

handle : long <Order>

punterReferenceNumber : long

cancelledForSideStake : MoneyAmount

The amout of for side stake that was cancelled. This

amount is always definitive. (In some rare circumstances

subsequent calls to e.g. ListOrderChangedSince may not

immediately reflect amounts that were matched just prior

to the order being cancelled. The amount of stake that was

matched when the order was cancelled can calculated

from this value, which is guaranteed to be correct).

Return Codes • RC008 MarketDoesNotExist

• RC016 MarketNeitherSuspendedNorActive

• RC137 MaximumInputRecordsExceeded

CancelAllOrders

Goal Cancels all unmatched orders across all markets.

Description Information about each order actually cancelled by this API will be

returned. Information about orders currently subject to an in-running delay

will not be returned as those orders will not be cancelled immediately.

Rather, when the in-running delay period has expired an attempt will be

made to match the order and then any remaining unmatched amount on the

order will be cancelled.

 This API will explicitly determine the number of Orders to be

actually cancelled and will not cancel any but return RC137 if the number

of orders to be cancelled exceeds the limit. You must then find another

mechanism to cancel those orders (like cancelling those orders in groups by

specifying the orders handles expicitly). This is to protect against Denial of

Service attacks.

Input Parameters

Output

Parameters

[variable]

handle : long <Order>

punterReferenceNumber : long

cancelledForSideStake : MoneyAmount

The amout of for side stake that was cancelled. This

amount is always definitive. (In some rare circumstances

subsequent calls to e.g. ListOrderChangedSince may not

immediately reflect amounts that were matched just prior

to the order being cancelled. The amount of stake that was

matched when the order was cancelled can calculated

from this value, which is guaranteed to be correct).

Return Codes • RC137 MaximumInputRecordsExceeded

ListBlacklistInformation

Goal Lists the black-list status for the punter.

Description This returns a list of every API from which the Punter is currentltly black-

Page 20 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

listed along with the remaining time (in milli-seconds) of the black-list

period for that API. Punters can be black-listed for different periods for

difference APIs.

Input Parameters

Output Parameters [variable]

apiName : String(32)

remainingMS : int

Number of milli-seconds remaining until the black-list

period expires.

SuspendFromTrading

Goal Suspend any of your orders from being matched.

Description This instantly prohibits any of your orders from getting matched

subsequently. It is very quick and efficient to suspend yourself in this way,

but it can take considerable effort to unsuspend yourself subsequently (all

your open orders must be suspended or cancelled before you can be

unsuspended).

 It is intended that this API be used sparingly and only in

emergencies.

Input Parameters

Output

Parameters

Return Codes • RC302 PunterIsSuspendedFromTrading

• RC406 PunterIsBlacklisted

UnsuspendFromTrading

Goal Unsuspend yourself from being suspending from trading.

Description This will allow your orders to be subsequently matched.

 You may not have any active orders when the attempt is made to

Unsuspend yourself – all active orders at the you were suspended must be

cancelled or suspended before you can be unsuspended.

Input Parameters

Output

Parameters

Return Codes • RC303 PunterHasActiveOrders

• RC304 PunterNotSuspendedFromTrading

• RC406 PunterIsBlacklisted

SuspendOrders

Goal Suspends one or more orders.

Description The amount of funds to be reserved is not re-calculated as a result of

suspending orders.

Input Parameters [variable]

handle : long <Order>

Output

Parameters

[variable]

handle : long <Order>

punterReferenceNumber : long

suspendedForSideStake : MoneyAmount

The amout of for side stake remaining unmatched when

the order was suspended. This amount is always

definitive. (In some rare circumstances subsequent calls to

e.g. ListOrderChangedSince may not immediately reflect

amounts that were matched just prior to the order being

suspended. The amount of stake that was matched when

the order was suspended can calculated from this value,

Page 21 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

which is guaranteed to be correct).

Return Codes • RC021 OrderDoesNotExist

• RC137 MaximumInputRecordsExceeded

• RC274 PunterOrderMismatch

• RC299 DuplicateOrderSpecified

SuspendAllOrdersOnMarket

Goal Suspends all unmatched orders on a market.

Description The amount of funds to be reserved is not re-calculated as a result of

suspending orders.

 This API will explicitly determine the number of Orders to be

actually suspended and will not suspend any but return RC137 if the

number of orders to be suspended exceeds the limit. You must then find

another mechanism to suspend those orders (like suspending those orders in

groups by specifying the orders handles expicitly). This is to protect against

Denial of Service attacks.

Input Parameters [variable]

handle : long <Market>

Output

Parameters

[variable]

handle : long <Order>

punterReferenceNumber : long

suspendedForSideStake : MoneyAmount

The amout of for side stake remaining unmatched when

the order was suspended. This amount is always

definitive. (In some rare circumstances subsequent calls to

e.g. ListOrderChangedSince may not immediately reflect

amounts that were matched just prior to the order being

suspended. The amount of stake that was matched when

the order was suspended can calculated from this value,

which is guaranteed to be correct).

Return Codes • RC008 MarketDoesNotExist

• RC016 MarketNeitherSuspendedNorActive

• RC137 MaximumInputRecordsExceeded

SuspendAllOrders

Goal Suspends all unmatched orders across all markets.

Description The amount of funds to be reserved is not re-calculated as a result of

suspending orders.

 This API will explicitly determine the number of Orders to be

actually suspended and will not suspend any but return RC137 if the

number of orders to be suspended exceeds the limit. You must then find

another mechanism to suspend those orders (like suspending those orders in

groups by specifying the orders handles expicitly). This is to protect against

Denial of Service attacks.

Input Parameters

Output Parameters [variable]

handle : long <Order>

punterReferenceNumber : long

suspendedForSideStake : MoneyAmount

The amout of for side stake remaining unmatched when

the order was suspended. This amount is always

definitive. (In some rare circumstances subsequent calls

to e.g. ListOrderChangedSince may not immediately

reflect amounts that were matched just prior to the order

being suspended. The amount of stake that was matched

when the order was suspended can calculated from this

value, which is guaranteed to be correct).

Page 22 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Return Codes • RC137 MaximumInputRecordsExceeded

UnsuspendOrders

Goal Unsuspends one or more suspended orders.

Description

Input Parameters [variable]

handle : long <Order>

Output

Parameters

Return Codes • RC021 OrderDoesNotExist

• RC137 MaximumInputRecordsExceeded

• RC274 PunterOrderMismatch

• RC299 DuplicateOrderSpecified

• RC302 PunterIsSuspendedFromTrading

• RC406 PunterIsBlacklisted

RegisterHeartbeat

Goal Register the Punter as requiring a Heartbeat.

Description Heartbeat provides a mechanism through which all of a Punter’s orders will

be cancelled, suspended (or the Punter itself suspended) automatically if

connectivity is lost between the application and the system. This provides

added protection to an application as it can be assured that its open orders

will not get matched if it can no longer manage its position because it has

lost connectivity with the system.

 The basic mechanism is that an application specifies that it wants

to create a Heartbeat and it specifies (i) the maximum threshold time after

which an action is to be automatically performed if a Pulse is not received

and (ii) the action that is to be performed (cancel all orders, suspend all

orders or suspend the Punter). The application then sends Pulses (via the

Pulse API) at least as frequently as the threshold specified. If a period of

time greater than the threshold passes without the system having received a

Pulse then the system automatically takes the action concerned. This action

will only be performed once for each threshold period exceeded. For

example, if the threshold value is 6000 and a period of 20000 milli-seconds

occurs between Pulses being received. The appropriate action will be taken

by the system 6000 milli-seconds after the Pulse was received. No further

action will be taken until a subsequent Pulse API call is received, after

which the system will again take the appropriate action if a Pulse API is not

received the threshold time.

 Heartbeat registrations are not persisted by the system. In the

unlikely event that a system component fails it discards all heartbeat

registrations when re-started, and all applications must reregister their

Heartbeats. The application is notified of this situation via the RC462

PunterNotRegisteredForHeartbeat return code from the Pulse API. This

could lead to exposure if both connectivity is lost and the system

component is restarted at exactly the same time, but this is an extremely

remote possibility.

 Note that this mechanism acts at the Punter level. Only one

registration can be active for a Punter at one time, and if a pulse is not

received within that value the action specified will be performed. Although

only one Heartbeat registration can be active at any time Pulse APIs can be

issued from any source. Care must be taken if two applications are

operating on the same Punter. At least two situations could arise:

1. If connectivity from the application that is issuing the Pulse APIs

is lost then the action automatically performed will affect orders

issued from all other applications (or issued manually through the

Page 23 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

web site).

2. If two applications are issuing Pulse APIs for the one Punter and

one of them lose connectivity the Pulse APIs being received from

the other will have the effect that no action is taken for that Punter

(as the system will keep received Pulse APIs for the relevant

Punter).

Input Parameters thresholdMs : int

The maximum period (in milli-seconds) that can elapse between

Pulse API calls being received before the system takes the relevant

action. A value of 6000 (equivelant to 6 seconds) is suggested, and

is is suggested that the application issue Pulse API calls every 5

seconds.

 An minimum threshold value may be enforced by the

implementation for efficiency reasons. If a threshold value less

than this minimum is specified it will be ignored and the minimum

value used as the threshold. It is unlikely that this minimum

threshold value will be less than 1000 milliseconds.

heartbeatAction : HeartbeatAction

The action that should be taken if a Pulse is not received within

the threshold. If CancelOrders or SuspendOrders is specified and

if the number of unmatched orders exceeds a limit the action that

will actually be taken is that the Punter will be suspended.

However the Punter would have been suspended more quickly

had the action been specified as SuspendPunter in the first case.

Output Parameters

Return Codes • RC463 PunterAlreadyRegisteredForHeartbeat

ChangeHeartbeatRegistration

Goal Update the Heartbeat parameters for the Punter.

Description

Input Parameters thresholdMs : int

heartbeatAction : HeartbeatAction

Output Parameters

Return Codes • RC462 PunterNotRegisteredForHeartbeat

DeregisterHeartbeat

Goal Deregister the Punter from requiring a Heartbeat.

Description The effect of this is that no action will be automatically taken on the Punter

if a Pulse is not received within the applicable threshold.

Input Parameters

Output Parameters

Return Codes • RC462 PunterNotRegisteredForHeartbeat

Pulse

Goal Notify the system that the application is still active and still has

connectivity.

Description If a period of time greater than the threshold (specified on a previous

RegisterHeartbeat or ChangeHeartbeatRegistration API) has elapsed since

the last Pulse was received the relevant action will be automatically

performed by the system (e.g. all orders will be cancelled or suspended or

the punter will be suspended automatically). The effect of this Pulse API is

that the absolute time by which the next Pulse API must be received will be

extended by the threshold value.

 Heartbeat registrations are not persisted by the system. In the

unlikely event that a system component fails it discards all heartbeat

Page 24 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

registrations when re-started, and all applications must reregister their

Heartbeats. The application is notified of this situation via the RC462

PunterNotRegisteredForHeartbeat return code from the Pulse API. This

could lead to exposure if both connectivity is lost and the system

component is restarted at exactly the same time, but this is an extremely

remote possibility.

Input Parameters

Output

Parameters

[optionally]

If an action was automatically performed since the last

RegisterHeartbeat API call was issued then information about that

action is returned.

performedAt : Timestamp

The time at which the action was performed.

heartbeatAction : HeartbeatAction

The actual action that was performed, which may differ

from the action requested on RegisterHeartbeat. For

example, the action requested may have been

CancelOrders. However if the number of unmatched

orders exceed a certain limit the action action that was

performed would be SuspendPunter.

Return Codes • RC462 PunterNotRegisteredForHeartbeat

Page 25 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

ReadOnly

This group of interfaces deals with all aspects of read-only interaction with the API.

As a rule the ReadOnly interface contain all methods that are not specific to the user’s

account i.e. getting Events, Markets, Selections and Prices etc.

ListTopLevelEvents

Goal Returns the set of top level events that are currently active.

Description

Input Parameters language : String(2)

[optionally]

wantPlayMarkets : Boolean

Flag indicating whether information about play markets

or real markets should be returned. Values are true: only

information about play markets is to be returned and

false: only information about real markets should be

returned. If not specified a value of false is assumed.

Output

Parameters

[variable]

handle : long <Event>

name : String

displayOrder : short

isEnabledForMultiples : Boolean

Return Codes • RC406 PunterIsBlacklisted

GetEventSubTreeNoSelections

Goal Returns the tree of events and markets.

Description Returns information about all descendent Events and Markets (but does not

return Selection information).

 Only information about active and suspended markets are returned.

Events that do not directly or indirectly contain active or suspended markets

are not returned.

Input Parameters language : String(2)

[variable]

handle : long <Event>

wantDirectDescendentsOnly : Boolean

Values are true: return only direct descendents of the Events

specified and false: return direct and indirect descendents of the

Events specified.

[optionally]

wantPlayMarkets : Boolean

Flag indicating whether information about play markets or

real markets should be returned. Values are true: only

information about play markets is to be returned and false:

only information about real markets should be returned. If

not specified a value of false is assumed.

Output

Parameters

[variable]

handle : long <Event>

parentHandle : long <Event>

name : String

displayOrder : short

isEnabledForMultiples : Boolean

[variable]

name : String

handle : long <Market>

Page 26 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

parentHandle : long <Event>

type : MarketType

isPlayMarket : Boolean

status : MarketStatus

numberOfWinningSelections : short

startTime : Timestamp

withdrawalSequenceNumber : short

displayOrder : short

isEnabledForMultiples : Boolean

isInRunningAllowed : Boolean

[optionally]

raceGrade : String (2048)

String containing the encoded race grade and

prize money information, if available.

managedWhenInRunning : Boolean

isCurrentlyInRunning : Boolean

inRunningDelaySeconds : int

[optionally]

placePayout : Percentage

The proportion of the payout that is to be paid on

the place part of an order on an each-way market.

Will only be present if the MarketType is one of

EachWayNonHandicap, EachWayHandicap or

EachWayTournament.

Return Codes • RC005 EventClassifierDoesNotExist

• RC137 MaximumInputRecordsExceeded

• RC406 PunterIsBlacklisted

GetEventSubTreeWithSelections

Goal Returns the tree of events and markets.

Description Returns information about all descendent Events and Markets (including

Selection information).

 Only information about active and suspended markets are returned.

Events that do not directly or indirectly contain active or suspended markets

are not returned.

 Information is returned about all selections within active and

suspended markets regardless of the status of those selections.

Input Parameters language : String(2)

[variable]

handle : long <Event>

[optionally]

wantPlayMarkets : Boolean

Flag indicating whether information about play markets or

real markets should be returned. Values are true: only

information about play markets is to be returned and false:

only information about real markets should be returned. If

not specified a value of false is assumed

Output

Parameters

[variable]

handle : long <Event>

parentHandle : long <Event>

name : String

displayOrder : short

isEnabledForMultiples : Boolean

[variable]

name:String

handle : long <Market>

type : MarketType

isPlayMarket : Boolean

status : MarketStatus

Page 27 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

numberOfWinningSelections : short

startTime : Timestamp

withdrawalSequenceNumber : short

dislpayOrder : short

isEnabledForMultiples : Boolean

isInRunningAllowed : Boolean

[optionally]

raceGrade : String (2048)

String containing the encoded race grade and

prize money information, if available.

managedWhenInRunning : Boolean

isCurrentlyInRunning : Boolean

inRunningDelaySeconds : int

[optionally]

placePayout : Percentage

The proportion of the payout that is to be paid on

the place part of an order on an each-way market.

Will only be present if the MarketType is one of

EachWayNonHandicap, EachWayHandicap or

EachWayTournament.

[variable]

name : String

handle : long <Selection>

status : SelectionStatus

selectionResetCount : short

selectionDeductionFactor : Decimal

displayOrder : short

Return Codes • RC005 EventClassifierDoesNotExist

• RC137 MaximumInputRecordsExceeded

• RC406 PunterIsBlacklisted

GetMarketInformation

Goal Returns detailed information about a given market.

Description

Input Parameters language : String(2)

[variable]

handle : long <Market>

Output

Parameters

[variable]

name : String

handle : long <Market>

parentHandle : long <Event>

type : MarketType

isPlayMarket : Boolean

status : MarketStatus

numberOfWinningSelections : short

startTime : Timestamp

withdrawalSequenceNumber : short

isEnabledForMultiples : Boolean

isInRunningAllowed : Boolean

[optionally]

raceGrade : String (2048)

String containing the encoded race grade and

prize money information, if available.

managedWhenInRunning : Boolean

isCurrentlyInRunning : Boolean

inRunningDelaySeconds : int

[optionally]

placePayout : Percentage

Page 28 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

The proportion of the payout that is to be paid on

the place part of an order on an each-way

market. Will only be present if the MarketType

is one of EachWayNonHandicap,

EachWayHandicap or

EachWayTournament.

[variable]

name : String

handle: long <Selection>

status : SelectionStatus

selectionResetCount : short

selectionDeductionFactor : Decimal

displayOrder : short

Return Codes • RC008 MarketDoesNotExist

• RC137 MaximumInputRecordsExceeded

• RC406 PunterIsBlacklisted

ListSelectionsChangedSince

Goal Poll to see if any selections have changed since the previous poll.

Description This API provides an efficient mechanism for external applications to

determine when any selection has changed on GBE. Although this will

inform of any changes the primary motivation of this API is to enable

external applications to determine when Selections have been settled on the

exchange.

 A selectionSequenceNumber is specified as input parameter to this

API. Details about any selections that have a selectionSequenceNumber

greater than that sequenceNumber (i.e. that have been changed since that

sequence number was allocated) will be returned. The returned details

includes the new sequence number for each selection. The maximum

sequence number returned from one call should be used as input to the next

ListSelectionChangedSince call.

 Note that the implementation will limit the number of selections

that will be returned in any one call (probably to 500). However

subsequence calls can be used to get the full set of selections that have been

changed. It is recommended that on start-up that this API be called

repeatedly until there are no new selections returned (at which stage the

caller can be sure that there are no outstanding selection changes) and then

called on a timed basis.

Input Parameters language : String(2)

selectionSequenceNumber : long

Output

Parameters

[variable]

name : String (256)

handle : long

displayOrder: int

isHidden : Boolean

status : SelectionStatus

selectionResetCount : int

withdrawalFactor : Percentage

[optionally]

cancelOrdersTime : Timestamp

[optionally]

settledTime : Timestamp

voidPercentage : Percentage

leftSideFactor : Percentage

rightSideFactor : Percentage

resultString : String (256)

handle : long <Market>

selectionSequenceNumber : long

Page 29 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Return Codes •

ListMarketWithdrawalHistory

Goal Get history of withdrawals from this market.

Description

Input Parameters handle : long <Market>

Output Parameters [variable]

handle : long <Selection>

withdrawalTime : Timestamp

sequenceNumber : int

Any orders with a withdrawal sequence number less than

this need to be re-priced.

reductionFactor : Percentage

The deduction for this on specific withdrawal.

compoundReductionFactor : Percentage

The combined deduction to be applied to orders that have

a withdrawal sequence number of the value specified.

Return Codes • RC008 MarketDoesNotExist

GetPrices

Goal Returns the prices for a particular market.

Description Prices are sorted in order of decreasing competiveness (e.g. highest back price first, lowest lay price first).

 In general, if an error occurs with one market then the prices for no markets are returned. For

example, if 4 market handles are specified and one of them doesn’t exist then no prices will be returned and a

return code of of the handle of a market that doesn’t exist is specified then a RC008 MarketDoesNotExist will

be returned. However, and exception is made in the case that is not currently active or suspended (as a market

could have just been completed without the caller being able to know this). In this case prices for other markets

will be returned and in indication that the specific market is currently neither active nor suspended will also be

returned.

Input

Parameters

currency : String(3)

thresholdAmount : MoneyAmount

The minimum backers stake required for for a price. This is a mechanism to be able to set a threshold

such that offers less than the threshold will not returned. For example, if you are only interested in a

price if there is at least 100.00 available at that price then specify 100.00 for this value. Any prices

that have less than 100.00 available will not be returned to you. Specify 0 if you do not have any

threshold amount.

numberForPricesRequired : int

The maximum number of for prices to return for each selection. This is a mechanism to reduce the

amount of data returned if you are only interested in, for example, the top 1 or top 3 prices on the for

side. Specify -1 if you want all for prices returned or 0 if you do not want any for prices returned.

numberAgainstPricesRequired : int

The maximum number of against prices to return for each selection. This is a mechanism to reduce

the amount of data returned if you are only interested in, for example, the top 1 or top 3 prices on the

against side. Specify -1 if you want all against prices returned or 0 if you do not want any against

prices returned.

[variable]

handle : long <Market>

[optionally]

wantMarketMatchedAmount : Boolean

Flag indicating whether or not the total amount matched on the market should be returned

(specifically whether the matchedMarketForStake and

matchedMarketAgainstStake output parameters should be returned). Values are true: return

market matched information and false: don’t return market matched information. If no value

is specified then a value of false is assumed.

[optionally]

wantSelectionsMatchedAmounts : Boolean

Flag indicating whether or not the total amount matched on each selection should be returned

Page 30 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

(specifically whether the matchedSelectionForStake and

matchedSelectionAgainstStake output parameters should be returned). Values are true: return

selection matched information and false: don’t return selection matched information. If no

value is specified then a value of false is assumed.

[optionally]

wantSelectionMatchedDetails : Boolean

Flag indicating whether or not details about the last match occurring on each selection should

be returned (specifically whether the lastMatchedOccurredAt, lastMatchedPrice,

lastMatchedForSideAmount and lastMatchWasFor output parameters should be returned).

Values are true: return details about the last match occurring on each selection false: don’t

return those details. If no value is specified then a value of false is assumed.

Output

Parameters

[variable]

[either]

handle : long <Market>

type : MarketType

isPlayMarket : Boolean

status : MarketStatus

numberOfWinningSelections : short

startTime : Timestamp

withdrawalSequenceNumber : short

isInRunningAllowed : Boolean

managedWhenInRunning : Boolean

isCurrentlyInRunning : Boolean

inRunningDelaySeconds : int

[optionally]

homeTeamScore : int

The score for the home team.

awayTeamScore : int

The score for the away team.

scoreType : ScoreType

[optionally]

totalMatchedAmount : MoneyAmount

The total amount that has been matched on the market. This will be

returned for

some markets and not for others.

[optionally]

placePayout : Percentage

The proportion of the payout that is to be paid on the place part of an order

on an each-way market. Will only be present if the MarketType is one of

EachWayNonHandicap, EachWayHandicap or

EachWayTournament.

[optionally]

Only present if the value of the wantMarketMatchedAmount input parameter was

true.

matchedMarketForStake : MoneyAmount

The total amount of for side stake matched on the market. For example, if

only a single match has occurred on the market where that match was for

$10 at a price of 11.0 then the value returned would be $10.

matchedMarketAgainstStake : MoneyAmount

The total amount of against side stake matched on the market. For

example, if only a single match has occurred on the market where that

match was for $10 at a price of 11.0 then the value returned would be

$100.

[variable]

handle: long <Selection>

status : SelectionStatus

selectionResetCount : short

selectionDeductionFactor : Decimal

[variable]<ForSidePrices>

Page 31 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

price : Price

stake : MoneyAmount

[variable]<AgainstSidePrices>

price : Price

stake : MoneyAmount

[optionally]

Only present if the value of the wantSelectionsMatchedAmounts input

parameter was true.

matchedSelectionForStake : MoneyAmount

The total amount of for side stake matched on the selection. For

example, if only a single match has occurred on the selection

where that match was for $10 at a price of 11.0 then the value

returned would be $10.

matchedSelectionAgainstStake : MoneyAmount

The total amount of against side stake matched on the selection.

For example, if only a single match has occurred on the selection

where that match was for $10 at a price of 11.0 then the value

returned would be $100.

selectionOpenInterest : MoneyAmount

The current open interest in this Selection independently of all

other Selections in this Market. This is the sum of the absolute

value of the open selection interest of each punter who has

matched orders on this Selection. The open selection interest for

each punter is the difference between what the punter would win

or lose on orders on this Selection if the Selection wins and if the

Selection loses.

 For example, consider the case where there are only two

punters with matched orders on the Selection. If the Selection

wins punter A will have a profit of $10 and punter B will have a

loss of $10 while if the Selection loses punter A will have a loss

of $5 and punter B will have a profit of $5. This value would be

$30 (the difference between what punter A would have depending

on whether the selection wins or loses is $15 and similarly for

punter B).

[optionally]

These will only be present for markets that have a value of 1 for

numberOfWinningSelections. marketWinnings : MoneyAmount

The current market winnings that would arise on this

Selection taking into consideration the orders all punters

have on other Selections in the Market. This is the sum

of the absolute value of the market winnings for each

punter who has orders matched in the Market (including

those punters who do not actually have any orders

matched on this Selection). The market winnings is the

amount of money a punter would win or lose on all

orders the punter has in the Market depending on

whether the Selection wins or loses.

 For example, consider a punter who has a single

back order for $10 at 11.0 on Selection 1 and a single lay

order for $20 at 3.0 on Selection 5. That punter’s

selectionOpenInterest on Selection 1 would be $110, his

marketOpenInterest on Selection 1 would be $120 on

Selection 1, -$50 on Selection 5 and $10 on all other

selections.

marketPositiveWinnings : MoneyAmount

The sum of the positive market winnings that punters

would have if this Selection wins.

[optionally]

Only present if (i) the value of the wantSelectionMatchedDetails input

Page 32 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

parameter was true and (ii) at least one match has occurred on this

selection.

lastMatchedOccurredAt : Timestamp

The time at which the last match occurred on this selection.

lastMatchedPrice : Price

The price at which the last matched occurred on this selection.

lastMatchedForSideAmount : MoneyAmount

The for side stake of the last match that occurred on this selection.

lastMatchedAgainstSideAmount : MoneyAmount

The for side stake of the last match that occurred on this selection.

matchedForSideAmountAtSamePrice : MoneyAmount

The total amount of for side stake that was matched at the same

contiguous price as the last match that occurred on this Selection.

For example, if $10 was matched at 1.98, then $8 at 2.0, then $5

at 1.98 and then $20 at 1.98 this value of this would be $25.

matchedAgainstSideAmountAtSamePrice : MoneyAmount

The total amount of against side stake that was matched at the

same contiguous price as the last match that occurred on this

Selection.

firstMatchAtSamePriceOccurredAt : Timestamp

The time (UTC) at which the first match occurred at the same

contiguous price as the last match that occurred on this Selection

– in other words the time since which all matching on the

Selection has occurred at the same price.

numberOrders : int

The number of orders that have been matched on this Selection.

numberPunters : int

The number of punters who have had orders matched on this

Selection.

[or]

returnCode : int

The only return code that is individually returned is RC016

MarketNeitherSuspendedNorActive.

Return

Codes

• RC008 MarketDoesNotExist

• RC016 MarketNeitherSuspendedNorActive

• RC137 MaximumInputRecordsExceeded

• RC406 PunterIsBlacklisted

GetOddsLadder

Goal Obtain the current odds ladder.

Description It is recommended that clients dynamically obtain the odds ladder (as

opposed to hard-coding it) as the odds ladder may periodically change,

which could cause clients that have hard-coded the odds ladder to stop

working correctly.

 The odds ladder returned identifies the only prices at which orders

should be placed. It does not necessarily mean that prices returned (from

GetPrices) will only contain those prices (it is possible that for short periods

after a change in the odds ladder additional prices may be returned).

Input Parameters priceFormat : PriceFormat

Output Parameters [variable]

price : Price

The precise (to 12 places of decimal) price concerned.

representation : String

The way in which the price concerned should be

displayed in the PriceFormat concerned. Consider the

price of 3.00. The representation in Decimal would be

‘3’, in Fractional it would be ‘2/1’ and in American it

would be ‘200’.

Page 33 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

GetSPEnabledMarketsInformation

Goal Get information defining which markets are enabled for starting-price

orders.

Description A list of eventIds is returned and for each eventId a list of marketTypes is

also returned. A market is enabled for starting-price orders if both:

1. an eventId is listed that is a direct or indirect ancestor of the

market concerned and

2. the marketType listed for that event is the same as that of the

market concerned.

Input Parameters

Output Parameters [variable]

eventId : long

[variable]

marketType: MarketType

Return Codes •

GetCurrentSelectionSequenceNumber

Goal Get the current maximum selectionSequenceNumber.

Description This API provides the initial sequence number for use by

ListSelectionChangedSince.

Input Parameters

Output Parameters selectionSequenceNumber : long

Return Codes •

ListSelectionTrades

Goal Returns the history of trades on the selection(s) specified.

Description There is a limit on the number of trades about which this call returns

information and this API may need to be called a number of times to get a

full history of trades on the selections concerned. Furthermore, it can be

polled to obtain information about any trades that occurred since its last

invocation.

 Each trade has an associated tradeId and tradeIds increase with

time, although not monotonically. This call returns the maximum tradeId of

trades about which information is returned (maxTradeIdReturned) and it

also returns the tradeId of the last trade that occurred on the selection

concerned (maxTradeId). An optional input parameter specifies the

minimum tradeId about which information should be returned

(fromTradeId). By repeatedly calling this API and specifying the

maxTradeIdReturned returned from the previous call as the fromTradeId

input parameter the full set of trades that occurred on the selection

concerned can be obtained.

Input Parameters currency : String (3)

[variable]

selectionId : long

It is not considered to be an error condition if a non-

existent or non-active selectionId is specified – simply no

no trade information will be returned for that selection.

 [optionally]

fromTradeId : long

If specified then only information about trades

that have a tradeId greater than this value will be

returned (trades are returned in order of

increasing tradeId).

Output [variable]

selectionId : long

Page 34 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Parameters maxTradeIdReturned : long

The maximum tradeId of the trades returned by this

invocation (trades are returned in order of increasing

tradeId).

maxTradeId : long

The tradeId of the latest trade that occurred on the

selection concerned.

[variable]

occurredAt : Timestamp

price : Price

backersStake : MoneyAmount

The backer’s stake of the trade concerned in the

currency concerned.

layersLiability : MoneyAmount

The layer’s liability of the trade concerned in the

currency concerned.

tradeType : TradeType

An indication of whether this was a back or a

lay.

Return Codes • RC137 MaximumInputRecordsExceeded

• RC406 PunterIsBlacklisted

ListTaggedValues

Goal Return Exchange TaggedValues.

Description Returns tagged values for the entities (EventClassifier, Market or Selection)

concerned

Input Parameters [variable]

identifier : long

entityType : EntityType

[optionally]

[variable]

name : String (256)

Cannot contain wildcards.

[optionally]

wantDescendents : Boolean

This parameter is ignored if the entity type is not

EventClassifier or Market. If the entityType is

EventClassifier or Market and if a value for this

(wantDescendents) parameter is not specified then a

value of false is defaulted.

 This parameter controls whether TaggedValues

for only the EventClassifier or Market specified or for the

EventClassifier or Market specified (and all Markets

directly contained within that EventClassifier) and all

contained Selections. Values are true: return tagged

values for the EventClassifier specified (and for Markets

directly contained within it) and for contained Selections

contained and false: only return TaggedValues explicitly

defined for the EventClassifier or Market specified.

Output

Parameters

[variable]

identifier : long

[variable]

entityType : entityType

name : String (256)

value : String (unlimited)

Return Codes • RC137 MaximumInputRecordsExceeded

• RC406 PunterIsBlacklisted

Page 35 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Page 36 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Data Dictionary (enumerations)
Boolean

Currency Character string containing the 3 character ISO currency code.

Decimal

EntityType Enumeration defining type of object. Domain values are:

EventClassifier (1)

Market (2)

Selection (3)

AuthorisedUser (14)

HeartbeatAction Enumeration defining the action to be performed when a threshold

period has expired without a Pulse having been received. Domain

values are:

CancelOrders (1)

Explicitly cancel all unmatched orders.

SuspendOrders (2)

Explicitly suspend all unmatched orders.

SuspendPunter (3)

Explicitly suspend the punter.

KillType Enumeration defining the kill type of a order. Domain values are:

FillAndKill (2)

After the initial attempt is made to match this order

any unmatched portion of the order is immediately

cancelled. Thus the order can be partially matched

but there will never be any unmatched portion of

the order remaining.

FillOrKill (3)

On the initial attempt to match this order if it is not

possible to match a specified amount of the order

then none of the order will be matched. If it had

been possible to match at least the specified

amount then the amount that can be matched will

be matched and the remaining unmatched amount

will be cancelled.

FillOrKillDontCancel (4)

On the initial attempt to match this order if it is not

possible to match a specified amount of the order

then none of the order will be matched. If it had

been possible to match at least the specified

amount then the amount that can be matched will

be matched and the remaining unmatched amount

will be not be cancelled but left as an unmatched

order.

SPIfUnmatched (5)

Same as Normal but any unmatched portion of the

order is to be matched at SP when the market is

turned in-running (or completed).

long

MarketStatus Enumeration defining the current status of a market. Domain values

are:

Inactive (1)

The Market is not active and has never had any

Orders issued against it.

Active (2)

The Market it active (that is, Orders can be issued

Page 37 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

against it).

Suspended (3)

The Market is not currently active but it has not yet

been completed.

Completed (4)

The Market is completed. No further Orders can be

issued against the Market but the result of the

Market is either not yet known or has not yet been

entered.

Settled (6)

The Market has been fully settled.

Voided (7)

The Market has been voided. All matched Orders

in this Market have also been voided.

Page 38 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

MarketType Enumeration defining the type of a market. Domain values include:

Win (1)

Place (2)

MatchOdds (3)

OverUnder (4)

AsianHandicap (10)

TwoBall (11)

ThreeBall (12)

Unspecified (13)

MatchMarket (14)

SetMarket (15)

Moneyline (16)

Total (17)

Handicap (18)

EachWayNonHandicap (19)

EachWayHandicap (20)

EachWayTournament (21)

RunningBall (22)

MatchBetting (23)

MatchBettingInclDraw (24)

CorrectScore (25)

HalfTimeFullTime (26)

TotalGoals (27)

GoalsScored (28)

Corners (29)

OddsOrEvens (30)

HalfTimeResult (31)

HalfTimeScore (32)

MatchOddsExtraTime (33)

CorrectScoreExtraTime (34)

OverUnderExtraTime (35)

ToQualify (36)

DrawNoBet (37)

HalftimeAsianHcp (39)

HalftimeOverUnder (40)

NextGoal (41)

FirstGoalscorer (42)

LastGoalscorer (43)

PlayerToScore (44)

FirstHalfHandicap (45)

FirstHalfTotal (46)

SetBetting (47)

GroupBetting (48)

MatchplaySingle (49)

MatchplayFourball (50)

MatchplayFoursome (51)

TiedMatch (52)

TopBatsman (53)

InningsRuns (54)

TotalTries (55)

TotalPoints (56)

FrameBetting (57)

ToScoreFirst (58)

ToScoreLast (59)

FirstScoringPlay (60)

LastScoringPlay (61)

HighestScoringQtr (62)

RunLine (63)

RoundBetting (64)

LineBetting (65)

Page 39 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

MoneyAmount The amount of money, not explicitly including an indication of the

currency concerned (as that can be inferred from the users’ session).

This is a decimal number to 2 places of decimal.

OrderActionType Enumeration defining the type of an order history audit record.

Domain values are:

Placed (1)

ExplicitlyUpdated (2)

Matched (3)

CancelledExplicitly (4)

CancelledByReset (5)

CancelledOnInRunning (6)

Expired (7)

MatchedPortionRepricedByR4 (8)

UnmatchedPortionRepricedByR4 (9)

UnmatchedPortionCancelledByWithdrawal (10)

Voided (11)

Settled (12)

Suspended (13)

Unsuspended (14)

ExpiredByMatching (15)

Unsettled (16)

Unmatched (17)

MatchedPortionRepriced (18)

CreatedFromLightweightPrice (19)

CancelledOnComplete (20)

OrderFillType Enumeration defining the matching behaviour desired for an order.

Domain values are:

Normal (1)

After the initial attempt is made to match this order

any unmatched portion of the order is to remain as

an unmatched order capable of being matched at a

subsequent time.

FillAndKill (2)

After the initial attempt is made to match this order

any unmatched portion of the order is immediately

cancelled. Thus the order can be partially matched

but there will never be any unmatched portion of

the order remaining.

FillOrKill (3)

On the initial attempt to match this order if it is not

possible to match a specified amount of the order

then none of the order will be matched. If it had

been possible to match at least the specified

amount then the amount that can be matched will

be matched and the remaining unmatched amount

will be cancelled.

FillOrKillDontCancel (4)

On the initial attempt to match this order if it is not

possible to match a specified amount of the order

then none of the order will be matched. If it had

been possible to match at least the specified

amount then the amount that can be matched will

be matched and the remaining unmatched amount

will be not be cancelled but left as an unmatched

order.

SPIfUnmatched (5)

Same as Normal but any unmatched portion of the

order is to be matched at SP when the market is

turned in-running (or completed).

Page 40 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

OrderStatus Enumeration defining the status of an order. Domain values are:

Unmatched (1)

The order is active and has some amount available

for matching (the order may be partially matched).

Matched (2)

The order has not been settled and it does not have

any unmatched amount. Either the order was fully

matched or it was partially matched and then

cancelled.

Cancelled (3)

This order has been cancelled and at least some of

the order was unmatched at the time of expiration..

Settled (4)

The order has been settled.

Void (5)

The order has been voided.

 Suspended (6)

At least some of this order is unmatched but the

order is suspended and is not available for

matching..

Percentage Decimal containing a value that is to be interpreted as a percentage.

For example the value 89.5642 is to be interpreted as meaning

89.5642 per cent.

Polarity Enumeration defining whether an order is for or against a line.

Domain values are:

 For (1)

This Order is being issued on the ‘for’ side of the

Selection (also known as the ‘left’ side or the

‘back’ side).

 Against (2)

This Order is being issued on the ‘against’ side of

the Selection (also known as the ‘right’ side or the

‘lay’ side).

PostingCategory Enumeration defining the categories of a posting. Domain values are:

Settlement (1)

This posting resulted from the settlement,

unsettlement or resettlement of a specific order.

Commission (2)

This posting resulting from the charging of

commission on market settlement, unsettlement or

resettlement.

Other (3)

This posting resulted from any other cause (for

example, a lodgement or withdrawal).

PunterCommissionBasis

Enumeration defining the basis on which commission for the punter

is to be calculated. Domain values are:

NetMarketWinnings (1)

Commission is to be calculated on the basis of a

Punter’s net winnings in a market.

MatchedForSideStakeExcludingPush (2)

Commission is to be calculated on the basis of

matched for side amount of each order (regardless

of whether the polarity of the order is for or

against). However (for all market types

other than EachWayNonHandicap,

EachWayHandicap and EachWayTournament) the

Page 41 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

amount of commission charged is to be reduced by

the voidPercentage specified at settlement. For

example if the void percentage was 100% (push)

no commission should be charged, whereas if the

voidPercentage is 50% the amount of commission

charged should be halved. voidPercentage should

be ignored for the each-way market types.

MatchedForSideStakeIncludingPush (3)

Commission is to be calculated on the basis of

matched for side amount of each order (regardless

of whether the polarity of the order is for or

against). Commission is to be charged if the net

settlement figure is zero, unless the market or

selection is voided.

MatchedAgainstSideStakeExclusingPush (4)

Commission is to be calculated on the basis of

matched against side amount of each order

(regardless of whether the polarity of the order is

for or against). However (for all market types

other than EachWayNonHandicap,

EachWayHandicap and EachWayTournament) the

amount of commission charged is to be reduced by

the voidPercentage specified at settlement. For

example if the void percentage was 100% (push)

no commission should be charged, whereas if the

voidPercentage is 50% the amount of commission

charged should be halved. voidPercentage should

be ignored for the each-way market types.

MatchedAgainstSideStakeIncludingPush (5)

Commission is to be calculated on the basis of

matched against side amount of each order

(regardless of whether the polarity of the order is

for or against). Commission is to be charged if the

net settlement figure is zero, unless the market or

selection is voided.

MatchedRiskedStakeExcludingPush (6)

Commission is to be calculated on the basis of

matched amount risked on each order. That is, if

the polarity of an order is ‘For’ the relevant stake is

the matched for side stake and if the polarity is

‘Against’ the relevant stake is the matched against

side stake. However (for all market types other

than EachWayNonHandicap, EachWayHandicap

and EachWayTournament) the amount of

commission charged is to be reduced by the

voidPercentage specified at settlement. For

example if the void percentage was 100% (push)

no commission should be charged, whereas if the

voidPercentage is 50% the amount of commission

charged should be halved. voidPercentage should

be ignored for the each-way market types.

MatchedRiskedStakeIncludingPush (7)

Commission is to be calculated on the basis of

matched amount risked on each order. That is, if

the polarity of an order is ‘For’ the relevant stake is

the matched for side stake and if the polarity is

‘Against’ the relevant stake is the matched against

side stake. Commission is to be charged if the net

settlement figure is zero, unless the market or

selection is voided

Page 42 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Price Price expressed as decimal odds. This is expressed to 12 decimal

places of decimals. However only exact values that are on our odds

ladder (with points for decimal, fractional and moneyline) will be

accepted.

PriceFormat Enumeration defining the format of a price. Domain values are:

Decimal (1)

The price is expressed in decimal format – in

particular the price is the decimal representation of

the payout for 1 currency unit stake.

Fractional (2)

The price is expressed in fractional format – in

particular the fraction is the winnings for 1

currency unit stake.

American (3)

The price is expressed in American format – in

particular if the price is greater than 0 it means the

amount of winnings for 100 currency unit stake

whereas if the price is less than zero it means the

amount of currency unit that needs to be staked to

win 100 currency units.

SelectionStatus Enumeration defining the current status of a Selection. Domain

values are:

 Inactive (1)

The Selection is not active and has never had any

Orders issued against it.

 Active (2)

The Selection is active (that is, Orders can be

issued against it).

Suspended (3)

Orders can not currently be placed on this

Selection.

Withdrawn (4)

The Entrant explicitly referenced by the Selection

has withdrawn from the Event and so Orders can

no longer be placed on this Selection.

BallotedOut (9)

The Entrant explicitly referenced by the Selection

has been balloted-out.

Voided (5)

Orders can no longer be placed on this Selection

and Orders previously placed for or against the

Selection have been voided.

Completed (6)

The Selection is completed. No further Orders can

be issued against the Selection but the result of the

Selection is either not yet known or has not yet

been entered.

Settled (8)

This Selection has already been settled. Individual

selections can be settled in advance of other

selections in the market being settled (early

settlement).

short

String

Timestamp Time expressed in UTC. All times in the system are expressed in

UTC.

TradeType Enumeration defining whether a trade was a back or a lay. Domain

Page 43 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

values are:

Back (1)

The backer took a lay price that was available.

Lay (2)

The layer took a back price that was available.

WithdrawRepriceOption Enumeration defining the action to take on a specific Order if a

withdrawal occurs on the Market that could cause a Rule-4 deduction

factor to be applied to the Order (this option only controls what

happens to the unmatched parts of Orders, those parts that have

already been matched will have the rule-4 deduction applied

regardless of the value of this option). Domain values are:

Reprice (1)

Reprice the unmatched parts of the Order. It is

anticipated that this would be the usual option

specified by Layers.

Cancel (2)

Cancel the unmatched parts of the Order.

DontReprice (3)

Do not reprice the unmatched parts of the Order.

Page 44 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Return Codes
RC000 Success

The API call was processed successfully

RC001 ResourceError

The API call was not processed successfully because of some critical resource constraint. This

error was not caused by invalid or incorrect parameters specified on the API call, but rather as

a result of a serious resource constraint within the exchange. Examples of serious resource

constraint include insufficient memory, disk space and operating system resources.

RC002 SystemError

The API call was not processed successfully because of some serious technical error within

the system. This error was not caused by invalid or incorrect parameters specified on the API

call, but rather as a result of a serious technical configuration error within the system itself.

RC005 EventClassifierDoesNotExist

An Event Classifier with the handle specified does not exist. Specify the handle of an existing

Event Classifier and retry.

RC008 MarketDoesNotExist

A Market with the handle specified does not exist. Specify the handle of an existing Market

and retry.

RC011 SelectionDoesNotExist

A Selection with the handle specified does not exist. Specify the handle of an existing

Selection and retry.

RC015 MarketNotActive

The action requested cannot be performed because the Market specified is not active. Activate

the Market and retry.

RC016 MarketNeitherSuspendedNorActive

The action requested cannot be performed because the Market specified is neither suspended

nor active. Either suspend or activate the Market and retry.

RC017 SelectionNotActive

The action requested cannot be performed because the Selection specified is not active.

Activate the Selection and retry.

RC019 InsufficientVirtualPunterFunds

The Order specified could not be placed because the increase in the amount of the Virtual

Punter’s funds that would need to be frozen as a result of that Order is greater than the value

specified for ‘maxVirtualReservationIncrease’.

RC021 OrderDoesNotExist

An Order with the handle specified does not exist. Specify the handle of an existing Order and

retry.

RC022 NoUnmatchedAmount

The Order specified could not be placed, cancelled or changed because the amount requested

is negative or the entire stake of the Order has already been matched.

RC114 ResetHasOccurred

The order was not placed because the expectedSelectionResetCount specified on the Order

does not match the current selectionResetCount for the Selection.

RC127 OrderAlreadySuspended

The Order specified is already suspended.

Page 45 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

RC128 TradingCurrentlySuspended

The Order could not be processed because all trading is currently suspended on the Exchange.

RC131 InvalidOdds

The odds specified are not valid. There are a number of reasons why the odds specified are not

considered valid including (1) the value specified is less than or equal to 1.0, (2) the odds

specified is not one of the odds values on the odds ladder (which is a combination of normal

decimal, fractional and moneyline odds) and (3) the odds and stake specified mean that it is

would not be possible to match the order.

An example of this third case is if on a against order you specify an amount of 0.01 and a price

of 1.2. The amount of layers liability involved in this case would be 0.002 which would round

to zero and therefore be an invalid match.

RC136 WithdrawalSequenceNumberIsInvalid

The Order was not placed because the withdrawal sequence number specified is greater than

the current withdrawal sequence number for the market.

RC137 MaximumInputRecordsExceeded

APIs that accept a variable number of iunput parameters have a limit on the number of

parameters that can be specified, for implementation and denial of service reasons. The limit

depends on the API concerned. That limit was exceeded in this case.

RC208 PunterSuspended

The requested action can not be performed because the Punter concerned is currently

suspended.

RC240 PunterProhibitedFromPlacingOrders

The Order was not placed / changed or cancelled because the Punter is either:

1. explicitly prohibited from placing Orders (and that includes changing or cancelling

Orders) or

2. is explicitly prohibited from placing Order in advance of his identity being

established and his identity has not yet been established.

RC241 InsufficientPunterFunds

The Order was not placed or changed because the Punter does not have sufficient unfrozen

funds to cover the increase in maximum downside that would result for the Order being placed

or changed.

RC271 OrderAPIInProgress

This API was not executed because another order API is currently in progress for this Punter.

A Punter can not issue more than one order API (PlaceSimgleOrder, PlaceGroupOrder or

ChangeOrder) at the same time.

RC274 PunterOrderMismatch

The API could not complete because one or more of the Orders specified were not issued by

the Punter specified or there is a mis-match between the Punter implied and the object

specified.

RC281 MarketNotEnabledForMultiples

The market of one or more selections specified does not support multiple bets.

RC285 MultipleLayerParameterAlreadyExists

A MultiplePriceMultipler for the MultipleLayer specified with the numberOfSelections

specified already exists.

RC288 LevelsRequestedExceedsMaximum

The number of levels of combination requested exceeds the system defined maximum. Specify

a smaller value for number of levels and re-try.

Page 46 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

RC289 NoMultipleOfferAvailable

The requested multiple bet was not matched because there was no multiple offers available on

the requested selection at the price requested.

RC293 InRunningDelayInEffect

An attempt was made to (i) change an order that is currently subject to an in-running delay or

(ii) place a multiple order or to get a multiple quotation involving a selection that is currently

in-running.

RC295 MultipleSelectionsUnderSameEvent

An attempt was made to place a multiple bet that contained two or more Selections belonging

to markets under the same event classifier. A multiple bet can not contain more thn one

selection in the same event.

RC296 MultipleSelectionsWithSameName

An attempt was made to place a multiple bet that contained two or more selections with

exactly the same name. In general, a multiple bet is not allowed to contain two selections with

the same name (although selections in markets of type MacthOdds or OverUnder are ignored

for this condition).

RC299 DuplicateOrderSpecified

The same order was specified more than once in the same API call. Ensure that an order is

only specified once in the API call and re-try.

RC301 OrderNotSuspended

The order specified is not currently suspended.

RC302 PunterIsSuspendedFromTrading

The requested operation could not be completed because the Punter concerned is currently

suspended from trading.

RC303 PunterHasActiveOrders

An attempt was made to unsuspend Punter from trading. A Punter can only be unsuspended if

the Punter currently has no active orders. However the Punter concerned currently does have

active orders.

RC304 PunterNotSuspendedFromTrading

The requested operation could not be completed because the Punter concerned is not currently

suspended from trading.

RC305 ExpiryTimeInThePast

The requested operation could not be performed because the expiry time specified is in the

past. Retry the operation either specifing an expiry time in the future or not specifying an

expiry time at all.

RC306 NoChangeSpecified

The requested operation (change order) could not be performed because the price specified is

the current price of the order concerned.

RC307 SoapHeaderNotSupplied

The SOAP header was not specified. All External API calls must include a SOAP header.

RC308 IncorrectVersionNumber

An incorrect version number specified in API header.

RC309 NoUsernameSpecified

You must specify your username in the API header.

RC310 InvalidParameters

Page 47 of 47

Copyright © Global Betting Exchange 2003, 2005 All Rights Reserved.

Invalid parameters were passed to the web method (for example, user sends a null parameter

when it's not optional).

RC311 NoPasswordSpecified

You must specify your password in the API header.

RC312 MultipleCombinationExclusionAlreadyExists

There is currently an active MultipleCombinationExclusion with the set of Selections

specified existing for the multiple layer specified.

RC313 MultipleCombinationExlcusionDoesNotExist

There is not currently an active MultipleCombinationExclusion with the set of Selections

specified for the multiple layer specified.

RC405 InvalidPassword

The password specified is not a valid password. Specifically it does not conform to the rules

defined for such passwords.

RC406 PunterIsBlacklisted

The operation requested was not executed because the Punter concerned is currently black-

listed from performing that action.

RC425 PunterNotRegisteredAsMultipleLayer

The requested action could not be performed because the Punter concerned has not been

registered as a multiple layer.

RC462 PunterAlreadyRegisteredForHeartbeat

The operation could not complete because the Punter concerned is already registered for a

Heartbeat.

RC463 PunterNotRegisteredForHeartbeat

The operation could not complete because the Punter concerened is not registered for a

Heartbeat. In addition to the application not having registered a Heartberat this situation can

also arise in the unlike event that a system component was reset, in which case the application

must reregister the Heartbeat.

RC473 ThresholdSpecifiedTooSmall

The threshold value specified is less than the system defined minimum threshold value.

RC477 UnmatchedOrderCouldResult

The attempt to place an order was not successful because it could result in an unmatched order

remaining on the system. The specific API call used can only be used for orders that can not

result in a an unmatched order. For example, you can not specify a KillType of

FillOrKillDontCancel.

RC533 PunterNotAuthorisedForAPI

The punter concerned is not authorised to use the external API.

RC597 MarketIsForRealMoney

The requested operation cannot be performed because the market concerned is not a play

market but the currency specified is a play currency.

RC598 MarketIsForPlayMoney

The requested operation cannot be performed because the market concerned is a plat market

but the currency specified is a real currency.

RC892 CannotChangeToSPIfUnmatched

The requested operation could not be performed because the orderFillType of the order

concerned is not Normal.

